Exotic Molecules Using F-Chemistry

Synthetic methodologies for organofluorine compounds has been important because introduction of the fluorinated functional groups has been quite useful for medicinal, agrochemical, and materials developments. The introduction of fluoro-functional groups into the lead or seed organic compounds has been one of the required approaches to improve/express the desired characteristics . In addition, one promising approach for stabilizing the strained molecular skeleton is to employ electron-withdrawing perfluoroalkyl substituents because the atomic p character of this group concentrates toward electronegative substituents (Bent 1961).

Electronegativity (Pauling): 4.0 lonization energy: 1680 kJ mol⁻¹ Electron affinity: -328.1 kJ mol⁻¹ (CI: -348.5) Bond-dissociation energy (F₂): 158.8 kJ mol⁻¹ (I₂: 151.1) van der Waals radius: 135 pm (H: 120 pm) \square

Mimic effect = Bioisosteres

Difluoromethylboron Skeleton (BCF₂H)

Chem. Commun. 2017, 53, 5546.

Reaction of pinBPh for a CF₂H-Borate

Use of Silicate Intermediate

Chem. Asian J. **2020**, 15, 3432.

[F₃B-CF₂H]⁻K⁺(18-crown-6)

Chem. Asian J. 2020, 15, 3432.

Ti-Mediated [2+2] Cycloaddition

X-ray structure