Stable Localized Biradicals

Whereas cyclobutane-1,3-diyl **A** is quite reactive even at low temperatures, the heavier congener **B** exhibits considerable thermal stability (Niecke 1995) due to "phosphorus trick" leading to singlet ground state. We found that suitable positioning of the substituents effectively stabilize the exotic open-shell P-heterocycle **B** even in air (*ANIE* 2003). The high stability has promoted further investigations in relation to applications based on electronic functionalities. So far studies on the air-stable **B** have revealed high electron-donating properties as well as considerable stability of the resulting cationic species. The procedures for **B** are suitable to install various substituents on the phosphorus, and the electronic properties of **B** can be widely tuned. Furthermore, the synthetic protocol of the air stable **B** can be appropriable for synthesis of air-tolerant P-heterocyclic monoradicals. Quite recently, we established procedures for exchanging the RP moiety of the biradical system.

S. Ito, *Tetrahedron Lett.* **2018**, *59*, 1–13. *Link* S. Ito, *Chem. Rec.* **2018**, *18*, 445–458. *Link*

Ambident Character of Cyclobutenylanion (CBA)

CB: S. Ito, H. Sugiyama, M. Yoshifuji, *Chem. Commun.* 2002, 1744.
S. Ito, T. T. Ngo, K. Mikami, *Chem. Asian J.* 2013, *8*, 1976.
BR: H. Sugiyama, S. Ito, M. Yoshifuji, *Angew. Chem. Int. Ed.* 2003, *42*, 3802. (R = Me) M. Yoshifuji, H. Sugiyama, S. Ito, *J. Organomet. Chem.* 2005, *690*, 2515. (R = benzyl)

Molecular Orbital: Tunable

See also: https://pubs.acs.org/doi/10.1021/acs.joc.0c00512

Electron Density Analysis

Localized Radicalic Electrons

Cross section of the PCPC plane

Stable Monoradical (Rad) from Cyclobutenylanion (CBA)

X-ray Characterization

Biradical Bites H₂

 $\delta_{\rm P} = -11.3$ (MeP), 55.9 (*t*-BuP) $^{2}J_{\rm PP} = 362.8$ Hz $\delta_{\rm P}$ = -37.1 (MeP), 143.8 (*t*-BuP) ${}^{2}J_{\rm PP}$ = 49.6 Hz ${}^{1}J_{\rm PH}$ = 321.1 Hz, ${}^{2}J_{\rm PH}$ = 9.9 Hz

 $\delta_{\rm P}$ = 3.3 (MeP), 47.1 (*t*-BuP) $^{2}J_{\rm PP}$ = 91.7 Hz

Inorg. Chem. 2009, 48, 8063.

BR for Electronics

The air-stable phosphorus congener of cyclobutane-1,3-diyl shows highly electron-donating property (= low oxidation potential) and considerable stability of the corresponding radical cation (*Chem. Lett.* 2006). Therefore, the open-shell singlet P-heterocycle would be available as a p-type organic semiconductor. As predicted, several stable derivatives worked as Field-Effect Transistors (FETs) via hole transfer under the relatively low gate (threshold) voltage. The facile generation holes would correspond to the open-shell character.

Biradicals (BR) as Electron-Donors

p-Type OFET Property

 $\mu = 1.67 \times 10^{-7} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ on/off = 70 $V_{\rm th} = -0.1 \, {\rm V}$

Transfer

Energy / eV

Hole Transfer: Hopping Model

 $\mu_{\rm est}$ = 1.5 x 10⁻⁴ cm² V⁻¹ s⁻¹

Dimer	V/meV	W/s ⁻¹	r/Å
T_1	1.44	24.8 x 10 ⁸	11.371
<i>T</i> ₂	0.69	5.7 x 10 ⁸	9.552
T_3	1.48	26.2 x 10 ⁸	10.740
T_4	1.09	14.2 x 10 ⁸	10.831
Р	0.84	8.5 x 10 ⁸	10.908
L_1	0.41	2.0 x 10 ⁸	15.209
L ₂	0.32	1.2 x 10 ⁸	10.573